
© 2020 JETIR June 2020, Volume 7, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 54

Replacing Virtual Machine with Docker to Build or

Deploy Application

Roshan1, Dr. Ashwini K.B2

Student1, Associate Professor2

Master of Computer Applications,

 RV College of Engineering, Bangalore, India.

Abstract
There are numerous approaches to encourage the creation of large-Scale Projects. One of the most frequently utilized

strategies is to make use of virtual machines (VM) that contain the program environment. VM exist as complete

standalone environments. VM utilize its own BIOS, CPU, RAM, and a complete OS. The VM regularly need to deal

with virtualization problems such as network congestion, VM sprawl and server hardware failures which reduce VM

performance. VM are replaced by Docker to make this process considerably simpler. Docker is a tool that uses OS-

level virtualization to deliver software in packages. These packages are known as containers. Docker allows creating

images that contain source code, libraries, dependencies, tools, and other files needed for an application to run.

Instead of abstracting the hardware, Docker containers abstract the OS. Every Docker container shares the exact same

OS by reducing the overhead to the host system. In terms of resource Docker are more lightweights than VMs.

Containers share operating systems consuming only fraction of the resources as compared to VM. Docker uses the

Docker engine which have the ability to sustain server application instances five times the amount of VM.

Keywords Operating System(OS), Central Processing Unit(CPU),Basic Input/output System(BIOS),Network

Interface Card(NIC), Random-access memory(RAM), Virtual Machine (VM) , Docker Data Center(DDC),Docker

Trusted Registry(DTR) .

I. Introduction

Docker is a platform to develop, run and deploy applications. Docker is a containerization platform that packages

applications with all its dependencies needed to run those applications in the form of containers. This ensures that the

application will work in any environment. Once the container is deployed it is kept running on top of the operating

system’s kernel. Docker can also coordinate with outsider instruments, which allows it to easily deploy and manage

Docker containers.

Each application will have its own set of libraries and dependencies. This also ensures that there is process level

isolation, so that each application is independent of other applications, allowing developers to build applications that

will not interfere with one another. The main components of Docker are images, containers and registry. Docker

image is a read-only template. For example, an image might contain an operating system with installed

applications. Docker containers can be created using these images. Docker makes it easy to create a new image and

update existing ones or download ready-only images. Docker-registry is used to store those images. One can upload

images to registry or download images from registry. Containers contain everything that is needed to run an

application. Each container is created from an image, which forms a secure and isolated platform for the application.

II. Literature Survey

Fog computing platforms are described in [1] which offers virtualized resources located in the vicinity of their end

users and how Docker-based systems which locally cache a copy of every container images are executed. Paper [2]

describes how Docker containers have become a prominent solution for deploying modern applications. Paper [3]

gives a solution to solve the problems of low resource utilization and complex deployment in traditional dispatcher

simulation training systems, by using a Docker-based simulation training system.

http://www.jetir.org/
https://searchnetworking.techtarget.com/definition/network-interface-card
https://searchnetworking.techtarget.com/definition/network-interface-card

© 2020 JETIR June 2020, Volume 7, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 55

A description is given in [4] about the status of Distributed computing and its technology which contributes for new

stack of computing placed on virtualization of assets and how Dockercan be used in a distributed environment. The

importance of Docker, an open source application containerization technology for building, shipping, and running

applications and the behavior of Docker swarm under DoS/DDoS is effectively presented in [5]. Cloud computing is

a successful and speedy evolving model with new features and capabilities which is being announced regularly. The

contribution of Docker to cloud environments is explained in paper[6]. The popularity of Docker because of its user

friendly platform for running and managing Linux containers. Is proven by the fact that the vast majority of

containerized tools are packaged as Docker images which is highlighted in paper [7].

III. Working of Docker

Docker uses client-server architecture. The Docker client communicates with Docker daemon, which takes care of

building, running, and distributing the Docker containers. The Docker client and daemon have the ability to run on the

same system, or it can also connect Docker client to a Docker daemon which is running on a remote location. To

enable communication between Docker client and daemon it uses REST API on top of UNIX sockets or network

interface.

Fig 1: Working of Docker

a) Docker Demon

The Docker daemon uses Docker API requests to manage Docker objects. Docker objects may be containers, images,

networks, and volumes. To manage Docker services the Docker daemon communicates with other Docker daemon.

b) Docker Client

Users interact with Docker using Docker client. Docker commands such as dockerrun, are sent to dockerd. The

Docker command makes use of Docker API. The Docker client can also communicate with more than one daemon.

c) Docker registry

Docker registry is used to store Docker images. Docker Hub is a public registry that a can be used to store the images.

Docker is configured in such a way that by default it looks for images on Docker Hub. Private registry is also

available making use of DDC and DTR.

d) Docker image

An image is a template for creating a Docker container. An image is a read-only template. Docker has the ability to

create its own images or make use of images that are created by others. To build an image, create a Dockerfile .When

we compare to other virtualization technologies the images are so lightweight, small, and fast.

e) Docker Container

An instance of an image is known as Docker Container. Using Docker API or CLI users have the ability to create,

start, stop, move, or delete a container. It is also possible to connect a container to one or more networks or attach

storage. A new image can be created based on its current state. By default, a container is isolated from other

containers.

http://www.jetir.org/

© 2020 JETIR June 2020, Volume 7, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 56

IV. Docker vs Virtual Machine

Virtual machines are software computers that provide the same functionality as physical computers. They are multiple

guest operating systems based on hardware, like physical computers, they also run applications and an operating

system. In simple terms, virtual machines are nothing but computer files that run on a physical computer and provide

the same functionality as a physical computer.

Fig 2: Virtual machine Architecture vs Docker Architecture

Virtual Machine Docker

Heavyweight Lightweight

Limited performance Native performance

Each VM runs in its own OS All containers share the host OS

Hardware-level virtualization OS virtualization

Startup time in minutes Startup time in milliseconds

Fully isolated and hence more

secure

Process-level isolation, possibly less secure

Allocates required memory Requires less memory space

Security is high as VM does

not share operating System

Security is low as Docker shares resources, an attacker can

exploit all the containers if the attacker gets access to even one

container.

http://www.jetir.org/

© 2020 JETIR June 2020, Volume 7, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 57

V. Process Vs Container Vs VM

Instance of a program running in a computer is known as process. A process is started when a program is either by a

user entering a shell command or by another program like a task .A process is a running program with a set of data. A

process can also initiate a sub-process, which is a called a child process.

 Process Container VM

Definition A representation of a

running program.

Isolated group of

processes managed by a

shared kernel

A full OS that shares

host hardware via

hypervisor

Use Case Abstraction to store sate

about a running process

Creates isolated

environments to run many

apps

Creates isolated

environments to run

many apps

Types of

OS

Same OS and distro as host Same Kernel, but different

distribution

Multiple independent

operating System

OS

isolation

Memory space and user

privileges

Namespaces and cgroups. Full OS isolation

Size Whatever users application

uses

Images measured in MB

+users application

Images measured in

GB+users application

Lifecycle Created by forking, can be

long or short lived, more

often short

Runs directly on kernel

with no boot process,

often is short lived.

Has a boot process and

is typically long lived

VI. Advantages of using Docker to create or deploy application than VM

In virtual machines Hypervisor lies between host and guest operating systems. It is a virtual platform that handles

more than one operating system on the server. It works between the operating system and CPU. Whereas Docker uses

Docker Engine that adds up an extra layer between host operating systems where the applications are virtualized and

executed.

In the case of virtual machines, each virtual machine has its own full operating system, so when running applications

built into VM, memory usage can be higher than necessary and VM can make use of resources needed by the host.

But containers share an operating system environment known as kernel so they use fewer resources than full VMs and

reduce pressure on the host's memory.

VMs utilize a lot of disk space as they contain a full operating system and associated application the VM is hosting.

Containers are light weight as they contain only those libraries that needed to run the containerized application so they

are more compact than VMs and can start more quickly than virtual machines.

When it comes to updating or patching the operating system, VMs must be updated one-by-one each guest OS must

be patched separately. With containers, only the operating system of the machine hosting the containers must be

updated. This simplifies maintenance significantly.

http://www.jetir.org/

© 2020 JETIR June 2020, Volume 7, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2006007 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 58

VII. Docker benefit in IT businesses.

i) Continuous Integration, Deployment and Testing

In DevOps-driven organizations, containers simplify the processes of CI/CD pipeline. Containers operate as reliable

infrastructure environment such that developers don’t need to perform complicated configuration tasks.

ii) Software Quality and Compliance

Collaboration between Devs and Ops becomes more transparent in delivering operating chunks of the application

that leads to better software quality and allows application to develop faster and deploy by improving compliance.

iii)Workload Portability

IT workloads can shift between different infrastructure instances and virtual environments without major

configuration changes or rework on the application code.

iv)Cost Optimization

Containers maximize resource utilization as it has its own isolated virtualized environments. Allowing organizations

to plan for infrastructure capacity.

v) Infrastructure Agnostic

Containers make the app components infrastructure skeptical, allowing organizations to move workloads between

simple metal servers to virtualized environments to cloud infrastructure as per as changes of business needs.

VIII. Conclusion

The paper gives a clear comparison between VM and Docker. The ability of Docker to solve the IT personnel and

businesses problems. It identified the challenges faced to deploy server environments using VMs and how Docker can

solve the problems. The usage of Docker to create images that contain source code, libraries, dependencies, tools,

and other files needed for an application to run and finally deploy server environments to improve the performance is

also mentioned.

References
[1] Arif Ahmed ,Guillaume Pierre: Docker Image Sharing in Distributed Fog Infrastructures,2019 IEEE

International Conference on Cloud Computing Technology and Science (CloudCom)

[2] Nannan Zhao , Vasily Tarasov , Ali Anwar , Lukas Rupprecht, DimitriosSkourtis,Amit Warke Slimmer

:Weight Loss Secrets for Docker Registries,2019 IEEE 12th International Conference on Cloud Computing

(CLOUD)

[3] Qun Ma , Jiabing Han , Zhengqing Xu , Xuanhuai Yang Qunshan Li :Docker-based Simulation Training

System on Dispatching and Control Cloud 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)

[4] Nikhil Marathe,Ankita Gandhi , Jaimeel M Shah : Docker Swarm and Kubernetes in Cloud Computing

Environment 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)

[5] Gaurav Bhatia , Arjun Choudhary, KratiDadheech :Behavioral Analysis of Docker Swarm Under DoS/ DDoS

Attack 2018 Second International Conference on Inventive Communication and Computational Technologies

(ICICCT)

[6] ArshModak ,S. D. Chaudhary , P. S. Paygude, S. R. Ldate :Techniques to Secure Data on Cloud: Docker

Swarm or Kubernetes? 2018 Second International Conference on Inventive Communication and

Computational Technologies (ICICCT)

[7] Abdulrahman Azab: Enabling Docker Containers for High-Performance and Many-Task Computing 2017

IEEE International Conference on Cloud Engineering (IC2E)

[8] Docker: Enterprise Container Platform — URL: www.docker.com

[9] Docker Hub — URL: https://hub.docker.com/

http://www.jetir.org/
https://ieeexplore.ieee.org/author/37273614300
https://ieeexplore.ieee.org/author/37086962986
https://ieeexplore.ieee.org/author/37950134600
https://ieeexplore.ieee.org/author/37085385315
https://ieeexplore.ieee.org/author/38506242300
https://ieeexplore.ieee.org/author/37086053566
https://ieeexplore.ieee.org/author/37087056702
https://ieeexplore.ieee.org/author/37087061029
https://ieeexplore.ieee.org/author/37087059341
https://ieeexplore.ieee.org/author/37087057491
https://ieeexplore.ieee.org/author/37087040135
https://ieeexplore.ieee.org/author/37087042773
https://ieeexplore.ieee.org/author/37086464993
https://ieeexplore.ieee.org/author/37086465069
https://ieeexplore.ieee.org/author/37271993900
https://ieeexplore.ieee.org/author/37086407607
https://ieeexplore.ieee.org/author/37086464261
https://ieeexplore.ieee.org/author/37085873589

